Search results for " random field"

showing 10 items of 41 documents

Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation

2016

The goal of image segmentation is to simplify the representation of an image to items meaningful and easier to analyze. Medical image segmentation is one of the fundamental problems in image processing field. It aims to provide a crucial decision support to physicians. There is no one way to perform the segmentation. There are several methods based on HMRF. Hidden Markov Random Fields (HMRF) constitute an elegant way to model the problem of segmentation. This modelling leads to the minimization of an energy function. In this paper we investigate direct search methods that are Nelder-Mead and Torczon methods to solve this optimization problem. The quality of segmentation is evaluated on grou…

Segmentation-based object categorizationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processing02 engineering and technologyImage segmentationMachine learningcomputer.software_genreSørensen–Dice coefficient0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentationArtificial intelligenceHidden Markov random fieldHidden Markov modelbusinesscomputerMathematicsProceedings of the 5th International Conference on Pattern Recognition Applications and Methods
researchProduct

Detecting faulty wireless sensor nodes through Stochastic classification

2011

In many distributed systems, the possibility to adapt the behavior of the involved resources in response to unforeseen failures is an important requirement in order to significantly reduce the costs of management. Autonomous detection of faulty entities, however, is often a challenging task, especially when no direct human intervention is possible, as is the case for many scenarios involving Wireless Sensor Networks (WSNs), which usually operate in inaccessible and hostile environments. This paper presents an unsupervised approach for identifying faulty sensor nodes within a WSN. The proposed algorithm uses a probabilistic approach based on Markov Random Fields, requiring exclusively an ana…

Brooks–Iyengar algorithmComputer scienceDistributed computingReal-time computingProbabilistic logicMarkov processMarkov Random Fieldsymbols.namesakeKey distribution in wireless sensor networksWireless Sensor Networks.Autonomic ComputingSensor nodesymbolsOverhead (computing)Algorithm designWireless sensor network2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)
researchProduct

Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

2016

This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adap…

FOS: Computer and information sciencesRandom fieldMarkov random fieldArtificial neural networkMarkov chainComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020207 software engineeringPattern recognition02 engineering and technologyIterative reconstructionConvolutional neural networkComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusinessGenerative grammarTexture synthesis2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
researchProduct

Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes

2018

We propose a new fitting method to estimate the set of second-order parameters for the class of homogeneous spatio-temporal log-Gaussian Cox point processes. With simulations, we show that the proposed minimum contrast procedure, based on the spatio-temporal pair correlation function, provides reliable estimates and we compare the results with the current available methods. Moreover, the proposed method can be used in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. We describe earthquake sequences comparing several Cox model specifications.

spatio-temporal pair correlation functionEnvironmental EngineeringGaussianminimum contrast methodnon-separable covariance function010502 geochemistry & geophysics01 natural sciencesPoint processGaussian random fieldSet (abstract data type)010104 statistics & probabilitysymbols.namesakeCorrelation functionEnvironmental Chemistry0101 mathematicsSafety Risk Reliability and Qualityearthquakes0105 earth and related environmental sciencesGeneral Environmental ScienceWater Science and TechnologyParametric statisticsMathematicslog-Gaussian Cox processesEstimation theoryContrast (statistics)symbolsEarthquakes Log-Gaussian Cox processes Minimum contrast method Non-separable covariance function Spatio-temporal pair correlation functionSettore SECS-S/01 - StatisticaAlgorithm
researchProduct

An autoregressive approach to spatio-temporal disease mapping

2007

Disease mapping has been a very active research field during recent years. Nevertheless, time trends in risks have been ignored in most of these studies, yet they can provide information with a very high epidemiological value. Lately, several spatio-temporal models have been proposed, either based on a parametric description of time trends, on independent risk estimates for every period, or on the definition of the joint covariance matrix for all the periods as a Kronecker product of matrices. The following paper offers an autoregressive approach to spatio-temporal disease mapping by fusing ideas from autoregressive time series in order to link information in time and by spatial modelling t…

Statistics and ProbabilityEpidemiologyComputer sciencecomputer.software_genreBayesian statisticsspatial statisticsBayes' theoremsymbols.namesakeMarkov random fieldsEconometricsDiseaseSpatial analysisParametric statisticsDemographyKronecker productCovariance matrixBayes TheoremField (geography)Bayesian statisticsEpidemiologic StudiesAutoregressive modelSpainsymbolsRegression AnalysisData miningcomputer
researchProduct

Weeds sampling for map reconstruction: a Markov random field approach

2012

In the past 15 years, there has been a growing interest for the study of the spatial repartition of weeds in crops, mainly because this is a prerequisite to herbicides use reduction. There has been a large variety of statistical methods developped for this problem ([5], [7], [10]). However, one common point of all of these methods is that they are based on in situ collection of data about weeds spatial repartition. A crucial problem is then to choose where, in the eld, data should be collected. Since exhaustive sampling of a eld is too costly, a lot of attention has been paid to the development of spatial sampling methods ([12], [4], [6] [9]). Classical spatial stochastic model of weeds cou…

[SDE.BE] Environmental Sciences/Biodiversity and EcologyBiodiversity and Ecology[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH][MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Biodiversité et EcologieStatistiques (Mathématiques)[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST][STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Markov decision process;dynamic programming;reinforcement learning;adaptive sampling;Markov random field;batch;sampling cost;field approach;weed[SDE.BE]Environmental Sciences/Biodiversity and Ecology[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST][ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]
researchProduct

The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario

2019

In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…

FOS: Computer and information sciencesfactor graphsComputer scienceComputer Science - Information TheoryMarkovin ketjut02 engineering and technologyMarkov random fieldsalgoritmit0202 electrical engineering electronic engineering information engineeringMaximum a posteriori estimationmax-product algorithmElectrical and Electronic EngineeringLinear combinationStatistical hypothesis testingdistributed systemsMarkov random fieldspectrum sensingApplied MathematicsNode (networking)Information Theory (cs.IT)linear data-fusionApproximation algorithm020206 networking & telecommunicationsComputer Science Applicationssum-product algorithmPairwise comparisonRandom variableAlgorithmstatistical inference
researchProduct

[IC‐P‐029]: GAUSSIAN MARKOV RANDOM FIELDS FOR ASSESSING INTERMODAL REGIONAL ASSOCIATIONS IN PRODROMAL ALZHEIMER's DISEASE

2017

Psychiatry and Mental healthCellular and Molecular NeuroscienceDevelopmental NeuroscienceEpidemiologyHealth PolicyNeurology (clinical)DiseaseGeriatrics and GerontologyGaussian markov random fieldsPsychologyDevelopmental psychologyCognitive psychologyAlzheimer's & Dementia
researchProduct

Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation

2018

International audience; Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. …

Dice coefficient criterionComputer scienceBrain image segmentation02 engineering and technologyMR-images[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Theoretical Computer Science03 medical and health sciences0302 clinical medicineArtificial Intelligence0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]SegmentationBrain magnetic resonance imagingHidden Markov modelRandom fieldbusiness.industryBroyden-Fletcher-Goldfarb-Shanno algorithmPattern recognitionImage segmentationhidden Markov random fieldMinimization3. Good healthHomogeneousBroyden–Fletcher–Goldfarb–Shanno algorithm020201 artificial intelligence & image processingAutomatic segmentationArtificial intelligenceHidden Markov random fieldbusiness030217 neurology & neurosurgerySoftwareJournal of Experimental & Theoretical Artificial Intelligence
researchProduct

Gesture Modeling by Hanklet-Based Hidden Markov Model

2015

In this paper we propose a novel approach for gesture modeling. We aim at decomposing a gesture into sub-trajectories that are the output of a sequence of atomic linear time invariant (LTI) systems, and we use a Hidden Markov Model to model the transitions from the LTI system to another. For this purpose, we represent the human body motion in a temporal window as a set of body joint trajectories that we assume are the output of an LTI system. We describe the set of trajectories in a temporal window by the corresponding Hankel matrix (Hanklet), which embeds the observability matrix of the LTI system that produced it. We train a set of HMMs (one for each gesture class) with a discriminative a…

Conditional random fieldKinectbusiness.industryComputer scienceMaximum-entropy Markov modelAction ClassificationHankel matrixMarkov modelHidden Markov ModelLTI system theoryGestureAction RecognitionGesture recognitionObservabilityArtificial intelligencebusinessHidden Markov modelAlgorithmHankel matrixSkeleton
researchProduct