Search results for " random field"
showing 10 items of 41 documents
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation
2016
The goal of image segmentation is to simplify the representation of an image to items meaningful and easier to analyze. Medical image segmentation is one of the fundamental problems in image processing field. It aims to provide a crucial decision support to physicians. There is no one way to perform the segmentation. There are several methods based on HMRF. Hidden Markov Random Fields (HMRF) constitute an elegant way to model the problem of segmentation. This modelling leads to the minimization of an energy function. In this paper we investigate direct search methods that are Nelder-Mead and Torczon methods to solve this optimization problem. The quality of segmentation is evaluated on grou…
Detecting faulty wireless sensor nodes through Stochastic classification
2011
In many distributed systems, the possibility to adapt the behavior of the involved resources in response to unforeseen failures is an important requirement in order to significantly reduce the costs of management. Autonomous detection of faulty entities, however, is often a challenging task, especially when no direct human intervention is possible, as is the case for many scenarios involving Wireless Sensor Networks (WSNs), which usually operate in inaccessible and hostile environments. This paper presents an unsupervised approach for identifying faulty sensor nodes within a WSN. The proposed algorithm uses a probabilistic approach based on Markov Random Fields, requiring exclusively an ana…
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
2016
This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adap…
Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes
2018
We propose a new fitting method to estimate the set of second-order parameters for the class of homogeneous spatio-temporal log-Gaussian Cox point processes. With simulations, we show that the proposed minimum contrast procedure, based on the spatio-temporal pair correlation function, provides reliable estimates and we compare the results with the current available methods. Moreover, the proposed method can be used in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. We describe earthquake sequences comparing several Cox model specifications.
An autoregressive approach to spatio-temporal disease mapping
2007
Disease mapping has been a very active research field during recent years. Nevertheless, time trends in risks have been ignored in most of these studies, yet they can provide information with a very high epidemiological value. Lately, several spatio-temporal models have been proposed, either based on a parametric description of time trends, on independent risk estimates for every period, or on the definition of the joint covariance matrix for all the periods as a Kronecker product of matrices. The following paper offers an autoregressive approach to spatio-temporal disease mapping by fusing ideas from autoregressive time series in order to link information in time and by spatial modelling t…
Weeds sampling for map reconstruction: a Markov random field approach
2012
In the past 15 years, there has been a growing interest for the study of the spatial repartition of weeds in crops, mainly because this is a prerequisite to herbicides use reduction. There has been a large variety of statistical methods developped for this problem ([5], [7], [10]). However, one common point of all of these methods is that they are based on in situ collection of data about weeds spatial repartition. A crucial problem is then to choose where, in the eld, data should be collected. Since exhaustive sampling of a eld is too costly, a lot of attention has been paid to the development of spatial sampling methods ([12], [4], [6] [9]). Classical spatial stochastic model of weeds cou…
The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario
2019
In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…
[IC‐P‐029]: GAUSSIAN MARKOV RANDOM FIELDS FOR ASSESSING INTERMODAL REGIONAL ASSOCIATIONS IN PRODROMAL ALZHEIMER's DISEASE
2017
Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation
2018
International audience; Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. …
Gesture Modeling by Hanklet-Based Hidden Markov Model
2015
In this paper we propose a novel approach for gesture modeling. We aim at decomposing a gesture into sub-trajectories that are the output of a sequence of atomic linear time invariant (LTI) systems, and we use a Hidden Markov Model to model the transitions from the LTI system to another. For this purpose, we represent the human body motion in a temporal window as a set of body joint trajectories that we assume are the output of an LTI system. We describe the set of trajectories in a temporal window by the corresponding Hankel matrix (Hanklet), which embeds the observability matrix of the LTI system that produced it. We train a set of HMMs (one for each gesture class) with a discriminative a…